Synthesis of Polyacetylene-like Modified Graphene Oxide Aerogel and Its Enhanced Electrical Properties

Enrico Greco, Jing Shang, Jiali Zhu, Tong Zhu

ACS Omega 2019, 4, 25, 20948-20954
DOI: 10.1021/acsomega.9b02097

Abstract:
A graphene-based or carbon-based aerogel is a three-dimensional (3D) solid material in which the carbon atoms are arranged in a sheet-like nanostructure. In this study, we report the synthesis of low-density polymer-modified aerogel monoliths by 3D macroassemblies of graphene oxide sheets that exhibit significant internal surface areas (982 m2/g) and high electrical conductivity (∼0.1 to 1 × 102 S/cm). Different types of materials were prepared to obtain a single monolithic solid starting from a suspension of single-layer graphene oxide (GO) sheets and a polymer, made from the precursors 4-carboxybenzaldehyde and poly(vinyl alcohol). These materials were used to cross-link the individual sheets by covalent bonds, resulting in wet-gels that were supercritically dried and then, in some cases, thermally reduced to yield graphene aerogel composites. The average densities were approaching 15–20 mg/cm3. This approach allowed for the modulation of the distance between the sheets, pore dimension, surface area, and related properties. This specific GO/polymer ratio has suitable malleability, making it a viable conductive material for use in 3D printing; it also has other properties suitable for energy storage, catalysis, sensing and biosensing applications, bioelectronics, and superconductors.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: